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SUMMARY

An estuarine two-dimensional vertical �nite-element model of tidal �ow has been established by laterally
integrating Navier–Stokes equation. To this end, a moving grid �nite-element method has been used.
An arbitrarily shaped quadrilateral element has been selected. This model has been validated by using
�eld data from two monitoring stations at the North Passage of the Changjiang Estuary. Using this
numerical model, two types of modelled results were obtained: (1) vertical distributions of tidal current
velocities at the North Passage of the Changjiang Estuary; (2) longitudinal distributions of tidal current
velocities at maximum �ood tide, at high slack water, at maximum ebb tide and at low slack water tide
at the North Passage of the Changjiang Estuary. The conclusion is that the model provides a reasonable
agreement with observed data. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tidal �ow is the main hydrodynamic force in estuaries. Both scientists and engineers have
been interested in tidal �ow because of its signi�cance in estuarine hydraulics, harbour con-
struction, channel dredging and pollutant monitoring. To this end, numerical models have been
developed that provide an e�ective method to simulate estuarine �ows. Two principal types
of two-dimensional (2D) numerical models have been used, i.e. two-dimensional horizontal
(2DH) [1–4] and two-dimensional vertical (2DV) models [4–8]. 2DH models, based on the
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depth-integrated equations, could simulate the horizontal distributions of tidal �ows, but verti-
cal variations are parameterized or treated in terms of analytic functions. 2DV models, based
on the width-integrated equations are well-suited to predict the vertical distributions of tidal
�ow in narrow estuaries. Numerical methods comprise �nite-di�erence methods (FDM) and
�nite-element methods (FEM) have been commonly used (e.g. FDM [7–10]; FEM [11–21]).
In 2DH models, where the vertical discretization is important, a �-co-ordinate transforma-

tion, combined with FDM has also been used to resolve signi�cant variations in estuarine
bottom topography and tidal elevations [6, 22–24]. Using a �-co-ordinate transformation the
computing domain is resolved by a constant number of sub-layers, enabling the computation
in the �-direction to be performed on a �xed grid.
FEM, based on variational principles or weighted residual method [25], is a general ap-

proach to solve partial di�erential equations, appropriate when dealing with estuarine complex
bathymetry and land boundaries. According to whether the computing area and grid are vary-
ing or not, it can be grouped into three types: (1) traditional FEM with any �xed computing
area and grid; (2) auto-adaptive FEM with a �xed computing area and varying grids; and
(3) moving grid FEM with varying computing areas and grids. In 2DV numerical models
of estuarine tidal �ow, computing areas and grids must vary with the tidal elevation. In this
paper, an FEM method where a �-co-ordinate transformation is not necessary when using
vertically moving grids will be derived.
The primary objective of the present paper is to develop and verify a 2DV estuarine tidal

model derived by the moving grid FEM, coupled with a turbulence closure sub-model. The
present model was developed by Li and Shi [26]. This represents a �rst step towards devel-
oping a general 2DV estuarine model.

2. NUMERICAL MODEL

2.1. Governing equations

Considering a right-hand Cartesian co-ordinate system (Figure 1), the governing equations
can be obtained by integrating Navier–Stokes equations over estuarine width (y direction,
Figure 2). The following assumptions are made: (1) hydrostatic approximation of the vertical
momentum equation; (2) ignoring lateral variations of the momentum distributions; (3) the
Coriolis acceleration is omitted; (4) Boussinesq approximation; and (5) the non-slip conditions
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Figure 1. Cartesian co-ordinate system.
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Figure 2. Schematic estuarine cross-section.

on the two sides of the estuary (where u= v=w=0). Then we can obtain the width-averaged
equations for conservation of estuarine tidal water mass and momentum:
Continuity equation
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Hydraulic pressure

p=pa + �g(&− z) (4)

where t denotes time; & the tidal elevation above the mean water level; �x and �z components
of eddy viscosities in x and z directions; p pressure; pa intensity of pressure; � the �uid
density; g the gravity acceleration; u and w components of tidal �ow velocities in x and z
directions; B=B(z) the estuarine width (a function of depth); h the estuarine depth (Figure 2);
H = &+ h the total water depth; and x and z horizontal and vertical Cartesian co-ordinates.
Lateral dispersion is very important in the modelling of tidal �ow in estuaries. The con-

sequences of neglecting the very important lateral dispersion would be to overestimate or
underestimate the tidal �ow. However, for the narrow and deep channel in estuaries (e.g. the
North Passage of the Changjiang Estuary), lateral dispersion is not too important and can be
neglected while vertical dispersion is important.

2.2. Boundary and initial conditions

(a) Open boundaries: Tidal elevation and velocity in each vertical layer can be speci�ed at
the open boundaries. Boundary conditions of tidal elevation and velocities should be given.
However, the open boundary for tidal velocities in each vertical layer cannot be given in
many cases. According to St Venant’s principle, the in�uence will be limited to the nearby
open boundary.
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(b) At the bottom:

��z

(
@u
@z

)
z=−h

= �b (�b is the bottom friction shear stress) (5)

where �b can be related to the lowest node by means of a friction law.
(c) At the free water surface:

��z

(
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@z

)
z=&
= �w (�w is the surface wind shear stress) (6)

Initial values for both tidal elevation and velocity distribution must be speci�ed. The former
is obtained by linear interpolation between the upper and lower boundaries values, while the
latter is taken as a logarithmic pro�le or a constant value: &|t=0 = &0; u|t=0 = u0; w|t=0 =w0.

2.3. Eddy viscosities

The horizontal eddy viscosity is de�ned as [27]
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where Kx=5∼10; �t is the time increment; R the average length of the main �ow line; r
the direct distance between the calculating point and the side of the estuary. This approach
does not include lateral dispersion e�ects.
The vertical eddy viscosity is obtained from the Prandtl’s mixing length assumption [27]

�z=K1l2m

∣∣∣∣@u@z
∣∣∣∣f(Ri) (8)

where Ri=−g(@�=@z)=�(@u=@z)2 is the Richardson number, accounting for the e�ect of vertical
density gradients on the vertical momentum exchange; f(Ri)= (1 + �Ri), �=1:0; K1 the
coe�cient; the mixing length

lm =

{
K(z − z0) (06z60:3H)

K(0:3H − z0) (0:3H6z6H)′

where K is the von Karman’s constant; z0 =Ks=30 and Ks the roughness length.

3. MOVING GRID FEM DERIVATIONS

3.1. Derivations of the continuity and momentum equations

Derivations of the following equations are restricted within any local element (Figure 3). Con-
sidering an arbitrarily shaped quadrilateral element (Figure 3(a)), the isoparametric co-ordinate
[(�n; �n); (n=1; 2; 3; 4)] (Figure 3(b)), ranging from 0 to ±1, is established at the centroid of
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Figure 3. Four-node isoparametric element.

the element. The reference Cartesian co-ordinate [(xi; zi); (i=1; 2; 3; 4)] (Figure 3(a)) is re-
lated to the isoparametric co-ordinate as x=

∑
xiNi; z=

∑
ziNi. Where Ni is the isoparametric

function [28]:

Nn(�; �)= 1
4(1 + �n�)(1 + �n�) (n=1; 2; 3; 4)

Let Bu= r; Bw= q, and introduce a set of functions: r=
∑
riNi, q=

∑
qiNi, p=

∑
piNi,

B=
∑
BiNi, in which ri; qi; pi; Bi are the numerical values of variables at the element node

points. Because these functions are approximate ones, if substituted into Equations (1) and
(3), they will not exactly satisfy the governing di�erential equations and may result in an
error or residual �. Using the Galerkin weighted residual method, the inner product is set to
zero [(�; Nj)=0; ( j=1; 2; 3; 4)] [25].
Thus, the local �nite-element equations can be written as

AR+ A1Q=0 (9)

(Note that AR= @Bu=@x; A1Q= @Bw=@z)

C
•
R+DR+ ER+ FP +GR+HR=0 (10)

(Note that C
•
R = @Bu=@t; advection matrix DR= u@Bu=@x; ER=w@Bu=@z; FP=(B=�)

@p=@x; horizontal di�usion matrix GR=−@=@x[B�x@u=@x]; vertical di�usion matrix HR=
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is Jacobian matrix: |J | is the determinant of Jacobian J ; and e is element index.

3.2. Derivation of the tidal elevation equation

Considering a one-dimensional element (two-node system) as shown in Figure 4, the shape
functions have the forms [28]: N1 = 1

2(1 − �), N2 = 1
2(1 + �), in which, �=(x − xc)=l=2, l is

the length of the element, and xc the reference Cartesian co-ordinate of the element centre
(Figure 4).
Let

∫ &
−h u dz= � and introduce a set of functions in the form B=

∑
BiNi, &=

∑
&iNi, �=∑

�iNi. Bi; &i; �i are the numerical values of variables at the element node points. Because
these functions are approximate ones too, if substituted into Equation (2), it may result in an
error or residual �. Using the Galerkin weighted residual method, the inner product is set to
zero [(�; Nj)=0; ( j=1; 2)] [28].
Thus, the local �nite-element equation has the form
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Figure 4. One-dimensional two-node element.
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For unsteady �ow, the time derivative will be replaced by various forms of �nite di�erences. In
general, the explicit scheme is conditionally stable while the implicit scheme is unconditionally
stable for any time increment and needs more computational resource due to non-linear matrix
algebraic equations. Therefore, an explicit scheme, Euler scheme is used for time marching.
This restricts the time step to Courant numbers, based on the gravity wave, below 1. However,
any attempt to perform stability analysis is a formidable task and so the time increment is
mostly acceptable throughout the numerical modelling.
Time discretization scheme is needed for unsteady �ow. Generally, the di�erential implicit

scheme is unconditionally stable, and allows a larger time increment. For time step, however,
it is required to solve the non-linear algebra equations with a lot of calculations. Therefore,
time discretization scheme with the �nite-element method, the explicit scheme is conditionally
stable. For two-dimensional �nite-element equations, it is di�cult to get stable justi�cation
using analytical method. Time step is actually determined using the numerical experimental
method.
Local element coe�cients are assembled using a Boolean matrix, which locates the ap-

propriate local nodal contribution in the corresponding global system. Global �nite-element
equations have the same forms with the local ones. As shown in Figure 5(a), the computing
areas, grids and the variables [&n�t ; uan�t ; w

a
n�t] at time [n�t] are all known. Tidal elevation

&(n+1)�t at time [(n + 1)�t] can be obtained from Equations (11), (5) and (6). Due to the
varying free surface, the computing areas and grids should be updated according to &(n+1)�t
(Figure 5(b)). Because of the varying areas and the grids, the velocity distributions [ubn�t
or wbn�t] are obtained by linear interpolation in the velocity distributions [u

a
n�t or w

a
n�t]. If

the time increment �t is small enough, this step can be omitted. Velocities [ub(n+1)�t] and
[wb(n+1)�t] can be obtained from Equations (10) and (9). Then the same steps above will be
repeated in the following cycle. The same topologies of two adjacent grids keep the section
locations �xed, but the z co-ordinate changes.

Surface Surface
Seaward 

Bottom Bottom(a) (b)

Figure 5. Meshes of two adjacent times: (a) Time n�t; (b) Time (n+ 1)�t.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:115–127



122 Z. SHI, S. S. LI AND O. S. PETERSEN

121°00’E           121°30’E                122°00’E                    122°30’E

31°45’N

31°30’N 

31°45’N 

Model trace 

31°15’N

0 m-5m-10m-20m

31°00’N 

y/km
10 20 30 40 50

0 

N 

10 

x/
km

20  

30 

Figure 6. Contour map of the North Passage of the Changjiang Estuary and monitoring stations (a �at
line on the map along the North Passage, showing where the model domain is).

4. APPLICATION OF MODEL TO THE CHANGJIANG ESTUARY

The Changjiang (Yangtze) is the fourth largest river in terms of both water and sediment
discharge in the world. The mean annual river discharge is 2:9× 104 m3 s−1. The Changjiang
Estuary is a mesotidal estuary with a mean tidal range of 2:9 m. It consists of the North
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Figure 7. Comparisons of observed and modelled tidal elevations at Stations 16 and 18.

Branch, the South Branch, the North Channel, the South Channel, the North Passage and the
South Passage (Figure 2). The North Passage has been chosen as a deep-water navigational
channel (depth 7.5–10:0 m), and it is therefore regularly dredged. Within the other channels,
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Figure 8. Comparisons of vertical pro�les of observed and modelled tidal velocities: (a) 21:00,
12 August 1978; (b) 24:00, 12 August 1978; (c) 02:00, 13 August 1978; (d) 08:00, 12 August
1978 at the Station 16; (e) 17:00, 12 August 1978; (f) 21:00, 12 August 1978; (g) 24:00, 12

August 1978; (h) 08:00, 13 August 1978 at the Station 18.
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Figure 9. Modelled tidal current velocity �eld (longitudinal)
at maximum �ood tide and at high slack water.
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Figure 10. Modelled tidal current velocity �eld (longitudinal) at maximum ebb tide and at low slack water.

water depths vary between 5.0 and 6:0 m. The set-up represents an idealization of the real
Changjiang Estuary as cross-sectional variations, as �ood plains, are neglected and that the
�ow is barotropic.
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The model has been veri�ed by hydrographic data (from 1400 h 12 August 1978 to 1200 h
13 August 1978) collected from Stations 16 and 18 (Figure 6) at the North Passage of the
Changjiang Estuary. Assuming the estuarine width B is not varied with time, a cross-sectional
bottom pro�le can be schematized as a rectangular bottom pro�le.
Comparisons of observed and modelled tidal elevations at Stations 16 and 18 are shown

in Figures 7(a) and 7(b). They demonstrate a reasonable agreement during all periods of the
tidal cycle, i.e. at slack water, early �ood tide, maximum �ood tide, high slack water, early
ebb tide and maximum ebb tide.
Comparisons of observed and modelled velocities at Station 16 are shown in Figures 8(a)

–8(d) and at Station 18 in Figures 8(e)–8(h). There is a reasonable agreement between
observed and modelled data. However, in Figures 8(b), 8(d) and 8(f), there is an apparent
surface layer with increased velocities, indicating the presence of a strati�cation approximately
at a relative depth of 0.7.
In Figures 9 and 10 are shown characteristic longitudinal distributions of modelled tidal

velocities through a �ood=ebb tidal cycle. The plots are shown for maximum �ood tide
(Figure 9(a)), high slack water (Figure 9(b)), maximum ebb tide (Figure 10(a)), low slack
water (Figure 10(b)).

5. CONCLUSIONS

An e�cient 2DV model, coupled with an algebraic turbulence closure sub-model, is established
to simulate estuarine tidal �ow. In the mean time, a vertically moving �nite-element method,
without a � transformation of vertical co-ordinates, is applied to the Changjiang tidal estuary.
The following conclusions can be drawn from this study: (1) �-co-ordinate transformation

is associated with the FDM in the estuarine tidal model; (2) the FEM derivations of the
governing equations with �-co-ordinate transformation become more complicated than without
it; and (3) if the governing equations are derived by the FEM, �-co-ordinate transformation
is no longer necessary. The model has been veri�ed with special reference to the Changjiang
Estuary.
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